I am open to collaborate an research on topics relating to Artificial Intelligence, robotics and/or application development. This page also enlists the publications I have been a part of.


This paper presents a short but non-obvious and interesting theorem in Number Theory that I originally discovered while working on a problem. This theorem states that \( bc - b - c \) is the largest number which \emph{cannot} be written as \( mb + nc \). Given all \( b, c, m and n \in \mathbb{N} \) . In this article I prove the above statement and also show a problem where this theorem could be directly applied to considerably make the problem easier.

Rishit Dagli and Süleyman Eken (2021) Deploying a smart queuing system on edge with Intel OpenVINO toolkit. In: Springer Soft Computing

Recent increases in computational power and the development of specialized architecture led to the possibility to perform machine learning, especially inference, on the edge. OpenVINO is a toolkit based on convolutional neural networks that facilitates fast-track development of computer vision algorithms and deep learning neural networks into vision applications, and enables their easy heterogeneous execution across hardware platforms. A smart queue management can be the key to the success of any sector. In this paper, we focus on edge deployments to make the smart queuing system (SQS) accessible by all also providing ability to run it on cheap devices. This gives it the ability to run the queuing system deep learning algorithms on pre-existing computers which a retail store, public transportation facility or a factory may already possess, thus considerably reducing the cost of deployment of such a system. SQS demonstrates how to create a video AI solution on the edge. We validate our results by testing it on multiple edge devices, namely CPU, integrated edge graphic processing unit (iGPU), vision processing unit (VPU) and field-programmable gate arrays (FPGAs). Experimental results show that deploying a SQS on edge is very promising.

Hussain Falih Mahdi and Rishit Dagli and Ali Mustufa and Sameer Nanivadekar (2021) Job Descriptions Keyword Extraction using Attention based Deep Learning Models with BERT. In: IEEE 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)

In this paper, we focus on creating a keywords extractor especially for a given job description job-related text corpus for better search engine optimization using attention based deep learning techniques. Millions of jobs are posted but most of them end up not being located due to improper SEO and keyword management. We aim to make this as easy to use as possible and allow us to use this for a large number of job descriptions very easily. We also make use of these algorithms to screen or get insights from large number of resumes, summarize and create keywords for a general piece of text or scientific articles. We also investigate the modeling power of BERT (Bidirectional Encoder Representations from Transformers) for the task of keyword extraction from job descriptions. We further validate our results by providing a fully-functional API and testing out the model with real-time job descriptions.

Rishit Dagli (2019) Machine Learning as a Decision Aid for Breast Cancer Diagonsis. In: International Advanced Research Journal in Science Engineering and Technology Vol. 6 Issue 10, October 2019

In this paper, we use the diagnosis of breast cytology to demonstrate the applicability of this method to medical diagnosis and decision making. Each of 11 cytological characteristics of breast fine-needle aspirates reported to differ between benign and malignant samples was graded 1 to 10 at the time of sample collection. Nine characteristics were found to differ significantly between benign and malignant samples. Mathematically, these values for each sample were represented by a point in a nine-dimensional space of real variables. We use various different algorithms and also demonstrate the comparison between the algorithms for the classification problem. Finally, an overall accuracy of 99.4048 % is achieved. We only classify 1 % of benign case as malignant. The algorithms used are programmed in python for demonstration purposes. This paper also demonstrates deploying the created model on cloud and building an API for calling the model and verify it.

Rishit Dagli (2018) Sierpienski Triangle. In: AMTI 53 rd Annual National Maths Conference, December 2018

This paper derives some new formulas for Sierpienski Fractal and how we can use the derived formulas to make faster computers and efficient cooling chips.The formulas derived can be used in many use cases in field of robotics and electronics.

Rishit Dagli (2018) Age of Zero. In: AMTI 53 rd Annual National Maths Conference, December 2018

publication description This paper describes the journey of zero and makes an attempt to show who discovered zero and how because the study of past events and inventions can give us many revolutionary ideas.